Deactivation retards recovery from inactivation in Shaker K+ channels.

نویسنده

  • C C Kuo
چکیده

In Na+ channels, recovery from inactivation begins with a delay, followed by an exponential course, and hyperpolarization shortens the delay as well as hastens the entire exponential phase. These findings have been taken to indicate that Na+ channels must deactivate to recover from inactivation, and deactivation facilitates the unbinding of the inactivating particle. In contrast, it is demonstrated in this study that recovery from inactivation in Shaker K+ channels begins with no delay on repolarization. Moreover, hyperpolarization hastens only the initial phase (fast component) of recovery yet retards the later phases of recovery by increasing the proportion of slow components. The time course of slow inward "tail" K+ currents, which presumably result from the open state(s) traversed by the recovering inactivated channel, always matches the fast, but not the slow, components of recovery, suggesting that the fast and the slow components primarily correspond to recovery via the open state (unblocking of the inactivating particle before channel deactivation) and via the closed state (deactivation before unblocking), respectively. Besides, changing external K+ concentration effectively alters the absolute value of the initial recovery speed, but not its voltage dependence. It seems that Shaker K+ channel deactivation hinders, rather than facilitates, the unbinding of the inactivating particle and therefore retards recovery from inactivation, whereas external K+ may enhance unbinding of the inactivating particle by binding to a site located near the external entrance of the pore.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Regulation of Deactivation by an Amino Terminal Domain in Human Ether-à-go-go –related Gene Potassium Channels

Abnormalities in repolarization of the cardiac ventricular action potential can lead to life-threatening arrhythmias associated with long QT syndrome. The repolarization process depends upon the gating properties of potassium channels encoded by the human ether-à-go-go-related gene (HERG), especially those governing the rate of recovery from inactivation and the rate of deactivation. Previous s...

متن کامل

Non-Native R1 Substitution in the S4 Domain Uniquely Alters Kv4.3 Channel Gating

The S4 transmembrane domain in Shaker (Kv1) voltage-sensitive potassium channels has four basic residues (R1-R4) that are responsible for carrying the majority of gating charge. In Kv4 channels, however, R1 is replaced by a neutral valine at position 287. Among other differences, Kv4 channels display prominent closed state inactivation, a mechanism which is minimal in Shaker. To determine if th...

متن کامل

Macroscopic Na+ Currents in the “Nonconducting” Shaker Potassium Channel Mutant W434F

C-type inactivation in Shaker potassium channels inhibits K+ permeation. The associated structural changes appear to involve the outer region of the pore. Recently, we have shown that C-type inactivation involves a change in the selectivity of the Shaker channel, such that C-type inactivated channels show maintained voltage-sensitive activation and deactivation of Na+ and Li+ currents in K+-fre...

متن کامل

Role of S4 positively charged residues in the regulation of Kv4.3 inactivation and recovery.

The molecular and biophysical mechanisms by which voltage-sensitive K(+) (Kv)4 channels inactivate and recover from inactivation are presently unresolved. There is a general consensus, however, that Shaker-like N- and P/C-type mechanisms are likely not involved. Kv4 channels also display prominent inactivation from preactivated closed states [closed-state inactivation (CSI)], a process that app...

متن کامل

Closed state-coupled C-type inactivation in BK channels.

Ion channels regulate ion flow by opening and closing their pore gates. K(+) channels commonly possess two pore gates, one at the intracellular end for fast channel activation/deactivation and the other at the selectivity filter for slow C-type inactivation/recovery. The large-conductance calcium-activated potassium (BK) channel lacks a classic intracellular bundle-crossing activation gate and ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 17 10  شماره 

صفحات  -

تاریخ انتشار 1997